Squares, Cubes, and Their Roots

Many students confuse the functions of squares, cubes, and their roots, and it can be difficult to recognize these numbers without memorizing them. This handout serves as a reference tool and provides a brief explanation of squares, square roots, cubes, and cube roots.

Squares

A square is a number multiplied by itself. For example, 4 x 4 is four squared. In math notation, with " n " representing any number, a number squared is written as n^{2}, so four squared would be written as 4^{2}. The following is a list of common perfect squares:

$0^{2}=0$	$7^{2}=49$	$14^{2}=196$
$1^{2}=1$	$8^{2}=64$	$15^{2}=225$
$2^{2}=4$	$9^{2}=81$	$16^{2}=256$
$3^{2}=9$	$10^{2}=100$	$17^{2}=289$
$4^{2}=16$	$11^{2}=121$	$18^{2}=324$
$5^{2}=25$	$12^{2}=144$	$19^{2}=361$
$6^{2}=36$	$13^{2}=169$	$20^{2}=400$

Square Roots

The opposite operation of squaring a number is finding its square root, and square roots are written with the radical symbol " $\sqrt{ }$ " over them. Because squaring and finding a number's square root are opposite operations, they cancel each other out. For example, $\sqrt{25}=5$ because $5^{2}=25$. The following is a list of common perfect square roots:

$$
\begin{array}{lrl}
\sqrt{0}=0 & \sqrt{49}=7 & \sqrt{196}=14 \\
\sqrt{1}=1 & \sqrt{64}=8 & \sqrt{225}=15 \\
\sqrt{4}=2 & \sqrt{81}=9 & \sqrt{256}=16 \\
\sqrt{9}=3 & \sqrt{100}=10 & \sqrt{289}=17 \\
\sqrt{16}=4 & \sqrt{121}=11 & \sqrt{324}=18 \\
\sqrt{25}=5 & \sqrt{144}=12 & \sqrt{361}=19 \\
\sqrt{36}=6 & \sqrt{169}=13 & \sqrt{400}=20
\end{array}
$$

Cubes

A cube is a number multiplied by itself and then multiplied by itself again. For example, $4 \times 4 \times 4$ is four cubed. In math notation, with " n " representing any number, a number cubed is written as n^{3}, so four cubed is written as 4^{3}. The following is a list of common perfect cubes:

$0^{3}=0$	$7^{3}=343$	$14^{3}=2744$
$1^{3}=1$	$8^{3}=512$	$15^{3}=3375$
$2^{3}=8$	$9^{3}=729$	$16^{3}=4096$
$3^{3}=27$	$10^{3}=1000$	$17^{3}=4913$
$4^{3}=64$	$11^{3}=1331$	$18^{3}=5832$
$5^{3}=125$	$12^{3}=1728$	$19^{3}=6859$
$6^{3}=216$	$13^{3}=2197$	$20^{3}=8000$

Cube Roots

The opposite operation of cubing a number is finding the cube root, and cube roots are written with the radical symbol " $\sqrt[3]{ }$ " over them. Because cubing and finding a number's cube root are opposite operations, they cancel each other out. For example, $\sqrt[3]{125}=5$ because $5^{3}=125$. The following is a list of common perfect cube roots:

$$
\begin{aligned}
& \sqrt[3]{0}=0 \\
& \sqrt[3]{1}=1 \\
& \sqrt[3]{8}=2 \\
& \sqrt[3]{27}=3 \\
& \sqrt[3]{64}=4 \\
& \sqrt[3]{125}=5 \\
& \sqrt[3]{216}=6
\end{aligned}
$$

$$
\begin{aligned}
\sqrt[3]{343} & =7 \\
\sqrt[3]{512} & =8 \\
\sqrt[3]{729} & =9 \\
\sqrt[3]{1000} & =10 \\
\sqrt[3]{1331} & =11 \\
\sqrt[3]{1728} & =12 \\
\sqrt[3]{2197} & =13
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[3]{2744}=14 \\
& \sqrt[3]{3375}=15 \\
& \sqrt[3]{4096}=16 \\
& \sqrt[3]{4913}=17 \\
& \sqrt[3]{5832}=18 \\
& \sqrt[3]{6859}=19 \\
& \sqrt[3]{8000}=20
\end{aligned}
$$

