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Solving Systems of Linear Equations Using Matrices  

What is a Matrix? 

A matrix is a compact grid or array of numbers.  It can be created from a system of equations and 

used to solve the system of equations.  Matrices have many applications in science, engineering, and 

math courses.  This handout will focus on how to solve a system of linear equations using matrices. 

 

How to Solve a System of Equations Using Matrices 

Matrices are useful for solving systems of equations.  There are two main methods of solving 

systems of equations: Gaussian elimination and Gauss-Jordan elimination.  Both processes begin the 

same way.  To begin solving a system of equations with either method, the equations are first 

changed into a matrix.  The coefficient matrix is a matrix comprised of the coefficients of the variables 

which is written such that each row represents one equation and each column contains the 

coefficients for the same variable in each equation.  The constant matrix is the solution to each of the 

equations written in a single column and in the same order as the rows of the coefficient matrix.  

The augmented matrix is the coefficient matrix with the constant matrix as the last column.  

Example: Write the coefficient matrix, constant matrix, and augmented matrix for the 

following system of equations: 

−3𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 9 

3𝑦𝑦 − 2𝑧𝑧 = 5 

4𝑥𝑥 − 3𝑦𝑦 + 2𝑧𝑧 = 7 

Solution: The coefficient matrix is created by taking the coefficients of each variable and 

entering them into each row.  The first equation will be the first row; the second equation 

will be the second row, and the third equation will be the third row. Also, the first column 

will represent the “𝑥𝑥” variable; the second column will represent the “𝑦𝑦” variable, and the 

third column will represent the “𝑧𝑧” variable. 

�
−3 −2 4

0 3 −2
4 −3 2

� 
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Because the second equation does not contain an “𝑥𝑥” variable, a “0” has been entered into 

the “𝑥𝑥” column in the second row.   

 

The constant matrix is a single column matrix consisting of the solutions to the equations. 

�
9
5
7
� 

To create the augmented matrix, add the constant matrix as the last column of the 

coefficient matrix.  

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

� 

 
For the Gaussian elimination method, once the augmented matrix has been created, use elementary 

row operations to reduce the matrix to Row-Echelon form.  There are three basic types of 

elementary row operations: (1) row swapping, (2) row multiplication, and (3) row addition.  Row 

multiplication and row addition can be combined together.   

 

(1) In row swapping, the rows exchange positions within the matrix. The matrix resulting from a row 

operation or sequence of row operations is called row equivalent to the original matrix. 

Example:  Swap row one and row three 

Solution: 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

�  
𝑅𝑅1↔𝑅𝑅3�⎯⎯⎯�  �

4 −3 2 7
0 3 −2 5

−3 −2 4 9
� 

 

(2) In row multiplication, every entry in a row is multiplied by the same constant. 

Example: Multiply row one by −1
3 

Solution: 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

�   
−  1

  3𝑅𝑅1�⎯⎯�  �
1 2/3 −4/3 −3
0 3 −2 5
4 −3 2 7

� 
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(3) In row addition, the column elements of row “A” are added to the column elements of row “B”.  

The resulting sums replace the column elements of row “B” while row “A” remains unchanged.   

 

Example: Add row one to row two 

Solution: 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

�   
𝑅𝑅1+𝑅𝑅2�⎯⎯⎯�  �

−3  −2  4 9
0 + (−3) 3 + (−2) −2 + 4 5 + 9

4  −3  2 7
� → 

�
−3 −2 4 9
−3 1 2 14

4 −3 2 7
� 

 
The previous examples all started from the original augmented matrix.  In order to solve a system of 

equations, these row operations are performed back to back on the resulting matrix, instead of 

returning to the original matrix each time, until Row-Echelon form is achieved.   

 

Row-Echelon form is characterized by having the furthest left non-zero entry in a row, the leading 

entry, with all zeros below it, and the leading entry of each row is in a column to the right of the 

leading entry in the row above it.  For Pre-Calculus students, the leading entry in each row should be 

reduced to a 1; for Linear Algebra students, this leading entry could be any number unless otherwise 

specified in your assignment. 

Example:  Are the following matrices in Row-Echelon form? 

a) �
1 −9 2 7
0 0 1 4
0 1 7 −6

�    b)   �
1 6 −8 11
0 1 1 −3
0 0 0 1

�      c)  �
1 5 12
0 1 −7
0 0 1

� 

 
Solution a):  No, this matrix is not in Row-Echelon form since the leading entry in row 

three is in a column to the left of the leading entry in row two.  Please note:  If we swapped 

row two and row three, then the matrix would be in Row-Echelon form. 
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Solution b): Yes, this matrix is in Row-Echelon form as the leading entry in each row has 

0’s below, and the leading entry in each row is to the right of the leading entry in the row 

above.  Notice the leading entry for row three is in column 4 not column 3.  The leading  

 

entry is allowed to skip columns, but it cannot be to the left of the leading entry in any row 

above it. 

 

Solution c):  Yes, this matrix is in Row-Echelon form.  Each leading entry in each row is to 

the right of the leading entry in the row above it, and each leading entry contains only 0’s 

below it. 

 

The following example will demonstrate how to use the elementary row operations to reduce the 

augmented matrix from a system of equations to Row-Echelon form. After Row-Echelon form is 

achieved, back substitution can be used to find the solution to the system of equations. 

Example: Solve the following system of equations using Gaussian Elimination: 

−3𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 9 

3𝑦𝑦 − 2𝑧𝑧 = 5 

4𝑥𝑥 − 3𝑦𝑦 + 2𝑧𝑧 = 7 

Solution:  First, create the augmented matrix for the system. 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

� 

Next use the elementary row operations to reduce the matrix to Row-Echelon form. 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

�   
−13𝑅𝑅1�⎯�  �

1 2
3 −43 −3

0 3 −2 5
4 −3 2 7

�
−4𝑅𝑅1+𝑅𝑅3�⎯⎯⎯⎯⎯� �

1 2
3 −43 −3

0 3 −2 5
0 −173

22
3 19

�
− 3
17𝑅𝑅3�⎯⎯� 

�
1 2

3 −43 −3
0 3 −2 5
0 1 −2217 −5717

�
𝑅𝑅3↔𝑅𝑅2�⎯⎯⎯� �

1 2
3 −43 −3

0 1 −2217 −5717

0 3 −2 5
�
−3𝑅𝑅2+𝑅𝑅3�⎯⎯⎯⎯⎯� �

1 2
3 −43 −3

0 1 −2217 −5717

0 0 32
17

256
17

�
17
32𝑅𝑅3�⎯� 
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�
1 2

3 −43 −3
0 1 −2217 −5717

0 0 1 8
� 

 
Finally, rewrite the matrix as a system of reduced equations and back substitute to find the 
solution. 

1𝑥𝑥 + 2
3𝑦𝑦 −

4
3𝑧𝑧 = −3 

1𝑦𝑦 − 22
17𝑧𝑧 = −

57
17 

1𝑧𝑧 = 8 
 

The reduced equations show that 𝑧𝑧 = 8.  Substitute 8 for 𝑧𝑧 and solve for 𝑦𝑦 in the second 

equation.  

1𝑦𝑦 − 22
17(8) = −

57
17 

𝑦𝑦 − 176
17 = −

57
17 

𝑦𝑦 = 7 

Substitute 8 for 𝑧𝑧 and 7 for 𝑦𝑦 in the first equation and solve for 𝑥𝑥. 

𝑥𝑥 + 2
3(7) − 4

3(8) = −3 

𝑥𝑥 + 14
3 −

32
3 = −3 

𝑥𝑥 − 6 = −3 

𝑥𝑥 = 3 

The solution to the system of equations is (3,7,8). 

 

An alternative method, the Gauss-Jordan elimination method, can be used to solve the system of 

equations.  This involves reducing the augmented matrix to Reduced Row-Echelon form.  The 

Reduced Row-Echelon form is similar to the Row-Echelon form except that the leading entry in 

each row must be a 1 and all other entries in the same column as a leading entry must be 0.  Unlike 

the Row-Echelon form, there is one and only one Reduced Row-Echelon form for a system of 

equations.   

Example: Solve the following system of equations using Gauss-Jordan Elimination: 

−3𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 9 
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3𝑦𝑦 − 2𝑧𝑧 = 5 

4𝑥𝑥 − 3𝑦𝑦 + 2𝑧𝑧 = 7 

Solution:  First, create the augmented matrix for the system. 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

� 

 

 

Next, use the elementary row operations to reduce the matrix to Reduced Row-Echelon 

form. 

 

�
−3 −2 4 9

0 3 −2 5
4 −3 2 7

�   
−13𝑅𝑅1�⎯�  �

1 2
3 −43 −3

0 3 −2 5
4 −3 2 7

�
−4𝑅𝑅1+𝑅𝑅3�⎯⎯⎯⎯⎯� �

1 2
3 −43 −3

0 3 −2 5
0 −173

22
3 19

�
− 3
17𝑅𝑅3�⎯⎯� 

�
1 2

3 −43 −3
0 3 −2 5
0 1 −2217 −5717

�
𝑅𝑅3↔𝑅𝑅2�⎯⎯⎯� �

1 2
3 −43 −3

0 1 −2217 −5717

0 3 −2 5
�
−3𝑅𝑅2+𝑅𝑅3�⎯⎯⎯⎯⎯� �

1 2
3 −43 −3

0 1 −2217 −5717

0 0 32
17

256
17

�
17
32𝑅𝑅3�⎯� 

�
1 2

3 −43 −3
0 1 −2217 −5717

0 0 1 8
�
22
17𝑅𝑅3+𝑅𝑅2�⎯⎯⎯⎯� �

1 2
3 −43 −3

0 1 0 7
0 0 1 8

�
4
3𝑅𝑅3+𝑅𝑅1�⎯⎯⎯� �

1 2
3 0 23

3

0 1 0 7
0 0 1 8

�
−23𝑅𝑅2+𝑅𝑅1�⎯⎯⎯⎯� 

�
1 0 0 3
0 1 0 7
0 0 1 8

� 

The solution to the system can be written directly from the Reduced Row-Echelon form by 

converting the matrix back to equation form.  

𝑥𝑥 = 3 

𝑦𝑦 = 7 

 𝑧𝑧 = 8 

Thus, the solution to the system of equations is (3,7,8).  This is the same solution obtained 

by using the Gaussian elimination method in the previous example. 

 

The system of equations above is an example of a consistent system of equations.  A consistent system 

of equations is characterized by having a leading coefficient in each column of the coefficient matrix 
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when it is row reduced to either Row-Echelon form or Reduced Row-Echelon form.  In other 

words, each variable represented by a column can be solved for a specific number.  With an 

inconsistent system of equations, the leading coefficient in one of the rows will be in the last column of 

the augmented matrix. 

 

 

 

 

Example: Determine if the following system of equations is consistent or inconsistent and 

state the solution. 

2𝑥𝑥 − 4𝑦𝑦 + 𝑧𝑧 = 3 

𝑥𝑥 − 3𝑦𝑦 + 𝑧𝑧 = 5 

3𝑥𝑥 − 7𝑦𝑦 + 2𝑧𝑧 = 12 

 

Solution: First, create the augmented matrix.  

�
2 −4 1 3
1 −3 1 5
3 −7 2 12

� 

Use the elementary row operations to obtain a Row-Echelon form. 

�
2 −4 1 3
1 −3 1 5
3 −7 2 12

�
𝑅𝑅2↔𝑅𝑅1�⎯⎯⎯� �

1 −3 1 5
2 −4 1 3
3 −7 2 12

�
−2𝑅𝑅1+𝑅𝑅2�⎯⎯⎯⎯⎯� �

1 −3 1 5
0 2 −1 −7
3 −7 2 12

�
−3𝑅𝑅1+𝑅𝑅3�⎯⎯⎯⎯⎯� 

 

�
1 −3 1 5
0 2 −1 −7
0 2 −1 −3

�
−1𝑅𝑅2+𝑅𝑅3�⎯⎯⎯⎯⎯� �

1 −3 1 5
0 2 −1 −7
0 0 0 4

�
1
2𝑅𝑅2�� �

1 −3 1 5
0 1 −12 −72

0 0 0 4
� 

The last row indicates the system is inconsistent.  This can most easily be seen if the last row 

is converted back to an equation. 

0𝑥𝑥 + 0𝑦𝑦 + 0𝑧𝑧 = 4 

According to this equation, there are not any values of 𝑥𝑥, 𝑦𝑦, or 𝑧𝑧 that will make the above 

equation true. Therefore, the system has no solution; this is represented by the symbol for 

the null set, ∅.  Any augmented system of equations is inconsistent if the Row-Echelon form 
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contains a row with the coefficient portion of the row containing all 0’s and the augmented 

column containing any number except 0.   

 

A system of equations can also be dependent.  In the case of a dependent system, one of the columns of 

the coefficient portion of the augmented matrix will lack a leading coefficient.  In some cases, the 

row corresponding to the missing leading coefficient will contain only 0’s. In other cases, there will 

be fewer rows than columns.  Be careful because the presence of a row of 0’s does not automatically  

 

indicate a dependent system.  If a system of three equations contains only two variables, then a row 

of 0’s does not indicate a dependent system.  However, a system of three equations with three 

variables that contains a row of 0s indicates a dependent system. 

 

Example 1: Determine if the following system of equations is consistent, inconsistent, or 

dependent, and state the solution. 

2𝑥𝑥 − 3𝑦𝑦 = −21 

3𝑥𝑥 + 2𝑦𝑦 = 1 

8𝑥𝑥 − 5𝑦𝑦 = −49 

Solution:  Create the augmented matrix and use elementary row operations to reduce the `

 matrix to Row-Echelon form. 

�
2 −3 −21
3 2 1
8 −5 −49

�
1
2𝑅𝑅1�� �

1 −32 −212

3 2 1
8 −5 −49

�
−3𝑅𝑅1+𝑅𝑅2�⎯⎯⎯⎯� �

1 −32 −212

0 13
2

65
2

8 −5 −49
�
−8𝑅𝑅1+𝑅𝑅3�⎯⎯⎯⎯⎯� 

 

�
1 −32 −212

0 13
2

65
2

0 7 35
�

2
13𝑅𝑅2�⎯� �

1 −32 −212

0 1 5
0 7 35

�
−7𝑅𝑅2+𝑅𝑅3�⎯⎯⎯⎯⎯� �

1 −32 −212

0 1 5
0 0 0

�
3
2𝑅𝑅2+𝑅𝑅1�⎯⎯⎯� �

1 0 −3
0 1 5
0 0 0

� 

This system of equations is consistent even though there is a row of 0’s at the bottom. The 

original system of equations had only two variables, 𝑥𝑥 and 𝑦𝑦, thus the solution to the system 

only contains two numbers.  The solution to the system of equations is (−3,5). 

 



 

Provided by the Academic Center for Excellence 9 Solving Systems of Linear Equations Using Matrices 
  Summer 2014 
 

Example 2: Determine if the following system of equations is consistent, inconsistent, or 

dependent, and state the solution. 

8𝑥𝑥 + 5𝑦𝑦 + 11𝑧𝑧 = 30 

−𝑥𝑥 − 4𝑦𝑦 + 2𝑧𝑧 = 3 

2𝑥𝑥 − 𝑦𝑦 + 5𝑧𝑧 = 12 

Solution 2: Create the augmented matrix and use elementary row operations to reduce the 

matrix to Row-Echelon form. 

 

 

�
8 5 11 30

−1 −4 2 3
2 −1 5 12

�
𝑅𝑅1↔𝑅𝑅2�⎯⎯⎯� �

−1 −4 2 3
8 5 11 30
2 −1 5 12

�
−1𝑅𝑅1�⎯⎯� �

1 4 −2 −3
8 5 11 30
2 −1 5 12

�
−8𝑅𝑅1+𝑅𝑅2�⎯⎯⎯⎯⎯� 

 

�
1 4 −2 −3
0 −27 27 54
2 −1 5 12

�
−2𝑅𝑅1+𝑅𝑅2�⎯⎯⎯⎯⎯� �

1 4 −2 −3
0 −27 27 54
0 −9 9 18

�
− 1
27𝑅𝑅2�⎯⎯� �

1 4 −2 −3
0 1 −1 −2
0 −9 9 18

�
9𝑅𝑅2+𝑅𝑅3�⎯⎯⎯⎯� 

�
1 4 −2 −3
0 1 −1 −2
0 0 0 0

� 

 

This system is dependent because the “𝑧𝑧” column does not have a leading coefficient, and 

the last row of the matrix contains only 0s.  Next, solve for the dependent solution to the 

system of equations. 

To begin, write the resulting system of equations. 

𝑥𝑥 + 4𝑦𝑦 − 2𝑧𝑧 = −3 

𝑦𝑦 − 𝑧𝑧 = −2 

0 = 0 

Then, solve the second equation for y in terms of z. 

𝑦𝑦 − 𝑧𝑧 = −2 

𝑦𝑦 = 𝑧𝑧 − 2 

Substitute the result for y into the first equation, and solve for x in terms of z. 

𝑥𝑥 + 4𝑦𝑦 − 2𝑧𝑧 = −3 
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𝑥𝑥 + 4(𝑧𝑧 − 2) − 2𝑧𝑧 = −3 

𝑥𝑥 + 4𝑧𝑧 − 8 − 2𝑧𝑧 = −3 

𝑥𝑥 + 2𝑧𝑧 − 8 = −3 

𝑥𝑥 − 8 = −2𝑧𝑧 − 3 

𝑥𝑥 = −2𝑧𝑧 + 5 

The solution to the dependent system of equations is (−2𝑧𝑧 + 5, 𝑧𝑧 − 2, 𝑧𝑧). 
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Practice Problems  

Solve the following systems of equations by: 

  

Gaussian Elimination Gauss-Jordan Elimination: 

1.          2𝑥𝑥 − 3𝑦𝑦 + 2𝑧𝑧 = 13 4.                    𝑥𝑥 − 3𝑦𝑦 + 𝑧𝑧 = 8 
3𝑥𝑥 + 𝑦𝑦 − 𝑧𝑧 = 2 2𝑥𝑥 − 5𝑦𝑦 − 3𝑧𝑧 = 2 

3𝑥𝑥 − 4𝑦𝑦 − 3𝑧𝑧 = 1 𝑥𝑥 + 4𝑦𝑦 + 𝑧𝑧 = 2 
  
2.                  𝑥𝑥 + 3𝑦𝑦 + 4𝑧𝑧 = 11 5.                   𝑥𝑥 − 3𝑦𝑦 + 2𝑧𝑧 = 0 

2𝑥𝑥 + 3𝑦𝑦 + 2𝑧𝑧 = 7 2𝑥𝑥 − 5𝑦𝑦 − 2𝑧𝑧 = 0 
4𝑥𝑥 + 9𝑦𝑦 + 10𝑧𝑧 = 20 4𝑥𝑥 − 11𝑦𝑦 + 2𝑧𝑧 = 0 

3𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧 = 1  
 6.          2𝑥𝑥 + 5𝑦𝑦 + 2𝑧𝑧 = −1 
3.               𝑡𝑡 − 𝑢𝑢 + 2𝑣𝑣 − 3𝑤𝑤 = 9 𝑥𝑥 + 2𝑦𝑦 − 3𝑧𝑧 = 5 

4𝑡𝑡 + 11𝑣𝑣 − 10𝑤𝑤 = 46 5𝑥𝑥 + 12𝑦𝑦 + 𝑧𝑧 = 10 
3𝑡𝑡 − 𝑢𝑢 + 8𝑣𝑣 − 6𝑤𝑤 = 27  

 

 

Solutions  

1. (2,−1,3) 

2. No Solution 

3. (27
2
𝑐𝑐 + 39, 5

2
𝑐𝑐 + 10,−4𝑐𝑐 − 10, 𝑐𝑐) 

4. �12
5

,−1, 13
5
� 

5. (16𝑐𝑐, 6𝑐𝑐, 𝑐𝑐) 

6. No Solution 


