ACADEMIC CENTER
FOR EXCELLENCE

MTH 154/MTH 155: Microsoft Excel Function Index

The following chart is a list of common Excel functions and operations. This chart is not a complete list of all the functions in Excel's Function Library; however, the following functions are ones that are most commonly used within MTH 154 and other calculation-based classes. The inputs of most functions can be numbers or cell references.

Function Syntax	Function Usage	Example
/	Divides the values before the symbol by the value after the symbol.	Find the quotient of 4 and 2. $\underline{\ln p u t}:=4 / 2$ Output: 2
*	Multiplies the values before and after the symbol.	Find the product of 4 and 2. $\text { Input: }=4 * 2$ Output: 8
+	Adds the values before and after the symbol.	Find the sum of 4 and 6 . $\text { Input: }=4+6$ Output: 10
-	Subtracts the values before and after the symbol.	Find the difference of 2 and 6 . $\text { Input: }=2-6$ Output: -4
\wedge	Raises the value before the caret to the value after the caret.	Find the square of 3 . $\text { Input: }=3^{\wedge} 2$ Output: 9
= ABS(number)	Takes the absolute value of the number in the parentheses.	Find the absolute value of -1 . Input: = ABS(-1) Output: 1

Function Syntax	Function Usage	Example
=SQRT(number)	Returns the square root of the number in the parentheses.	Find the square root of 16. $\text { Input: = SQRT(} 16 \text {) }$ Output: 4
=SUM(first number, second number, etc.) OR =SUM(first cell reference : last cell reference)	Sums the data listed within the parentheses.	Find the sum of 1,1 , and 5 . $\text { Input: = SUM }(1,1,5)$ Output: 7
```=AVERAGE(first number, second number, etc.) OR =AVERAGE(first cell reference : last cell reference)```	Computes the average (or mean) of the data listed within the parentheses.	Find the average of 4,2 , and 6 .   Input: = AVERAGE(4, 2, 6)   Output: 4
=MAX(first number, second number, etc.) OR   =MAX(first cell reference :   last cell reference)	Finds the maximum value of the data listed in the parentheses.	Find the max value of 1,5 , and 3 . $\text { Input: }=\operatorname{MAX}(1,5,3)$   Output: 5
$=$ MIN(first number, second number, etc.)   OR   $=$ MIN(first cell reference :   last cell reference)	Finds the minimum value of the data listed within the parentheses.	Find the min value of 1,5 , and 3 .   Input: $=\operatorname{MIN}(1,5,3)$   Output: 1


Function Syntax	Function Usage	Example
=MEDIAN(first number, second number, etc.)   OR   =MEDIAN(first cell reference   : last cell reference)	Returns the median value of the data inputted in the parentheses.	Find the median of $1,2,3,4$, and 5 .   Input: $=$ Median(1, 2, 3, 4, 5)   Output: 3
=COUNT(first number, second number, etc.)   OR   =COUNT(first cell reference :   last cell reference)	Counts the number of data points in the parentheses.	How many values are listed: $1,3,4$, 5? $\text { Input: }=\operatorname{COUNT}(1,3,4,5)$   Output: 4
=MODE(first number, second number, etc.) OR =MODE(first cell reference :   last cell reference)	Outputs the most frequently occurring number in a group of numbers.	What is the mode of $5,5,5,6,7$, and 10 ? $\text { Input: }=\operatorname{MODE}(5,5,5,6,7,10)$   Output: 5
=SLOPE(first y cell reference:   last y cell reference, first x cell reference: last $x$ cell reference)	Outputs the slope of a linear regression equation given points $x$ and $y$. Inputs must be in terms of cell references.	Given the points on a line, $(2,3)$ and $(6,4)$, find the slope.   Input: First, enter data into a spreadsheet.   Then, input: $=\operatorname{SLOPE}(B 2: B 3, A 2: A 3)$   Output: 2


Function Syntax	Function Usage	Example
INTERCEPT(first y cell		
reference: last y cell		
reference, first x cell		
reference: last x cell		
reference)	Outputs the y-intercept of a   linear regression equation   given points x and y. Inputs   must be in terms of cell   references.	and (6,4), find the intercept.   Input: First, enter data into a   spreadsheet.


Function Syntax	Function Usage	Example
=NPER(periodic rate,   - payment, principle, optional future value)	Returns the number of periods it will take to pay off a loan or reach an investment goal. Because payments are considered an expense, they are written with a negative sign.	Find the number of monthly payments it will take to pay off a $\$ 50,000$ loan at $5 \%$ if each payment is $\$ 2,194$.   Input: = NPER(5\%/12, -2194, 50000)   Output: 24
$=P V$ (periodic rate, total number of periods, - payment, optional future value)	Returns the present value needed to reach a future investment goal. Because payments are considered an expense, they are written with a negative sign. Excel also views PV as an expense, so the output will also be negative.	Determine how much money should be placed in a 5\% APR savings account to have $\$ 50,000$ in 10 years with $\$ 150$ monthly payments   Input: $=P V(5 \% / 12,10 * 12,-150,50000)$   Output: - $\$ 16,215.85$
$=\mathrm{FV}$ (periodic rate, total number of periods, - payment, -optional present value)	Returns the future value of an investment. Because payments are taken out of an individual's bank account, they are written with a negative sign. Excel views PV as an expense, so it is also written with a negative sign.	If $\$ 587.80$ is deposited into a savings account at 3\% APR. If \$150 is deposited each month, how much will be in the account after 3 years?   Input: $=F V(3 \% / 12,3 * 12,-150,-587.80)$   Output: \$6285.62


Function Syntax	Function Usage	Example
=NOMINAL(APY, total number of periods)	Returns the APR, or nominal rate, given an APY and number of periods.	Suppose that $\$ 3000$ is invested in a 6 -month CD with an APY of $1.2 \%$.   What is the corresponding APR?   Input:   $=\operatorname{NOMINAL}(1.2 \%, 2)$   Output: 0.011964   To turn the output into a percentage, multiply by 100 .
=EFFECT(APR, total number of periods)	Returns the APY, or effective rate, given an APR and number of periods.	Suppose that $\$ 3000$ is invested in a 6 -month CD with an APR of 1.196\%. What is the annual percentage yield of this investment?   Input:   $=\operatorname{EFFECT}(1.196 \%, 2)$   Output: 0.01199   To turn the output into a percentage, multiply by 100 .
$=\mathrm{IF}$ (logical test, value if true, value if false)	Returns one of two values after a logical test is completed.	Create an if statement that will output "true" if 1 is greater than 0 and "false" if 0 is greater than 1.   Input:   $=\operatorname{IF}(1>0$, "true", "false" )   Output: true
= EXP(number)	Calculates the exponential of a number.	Using Excel, calculate $\mathrm{e}^{2.1}$. Input: = EXP(2.1)   Output: 8.17

