Logarithms

Natural exponential function

$$
f(x)=e^{x}
$$

e is called Euler's number. Like π, Euler's number is an irrational number; it's decimal equivalent is a never-ending sequence of digits:

$$
\mathrm{e} \approx 2.71828182845904523 \ldots
$$

Logarithmic functions answer the following question "to what power must I raise a number to in order to get a specific number?"

$$
\begin{array}{llll}
\text { example: } & \log _{e} x=n & \equiv & e^{n}=x \\
& \log _{3} 81=x & \equiv & 3^{x}=81 ; \mathrm{x}=4 \\
\log _{2} x=-5 & \equiv & 2^{-5}=x ; \mathrm{x}=\frac{1}{32} \\
\log _{x} 125=3 & \equiv & x^{3}=125 ; \mathrm{x}=5 \\
& \log _{a} 1=x & \equiv & a^{x}=1 ; \mathrm{x}=0\left(\text { remember } x^{0}=1\right)
\end{array}
$$

Base 10 or Common Log (no base is shown; log)
$\log 1000=3 \equiv 10^{3}=1000$

Base e or Natural Logarithm

$\ln \mathrm{x}$ or $\log _{e} x$

Inverse Relationship

$$
\begin{aligned}
& \log _{a}\left(a^{x}\right)=a^{\log _{a} x}=x \\
& \log \left(10^{x}\right)=10^{\log x}=x \\
& \ln \left(e^{x}\right)=e^{\ln x}=x
\end{aligned}
$$

Properties of Logarithms

1) $\log (x y)=\log x+\log y$

$$
\text { ex: } \ln 15=\ln (3 * 5)=\ln 3+\ln 5
$$

2) $\log x^{a}=a \log x$
ex: $\ln x^{4}=\ln (\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})=\ln \mathrm{x}+\ln \mathrm{x}+\ln \mathrm{x}+\ln \mathrm{x}=4 \ln \mathrm{x}$
3) $\log \frac{x}{y}=\log x-\log y$
ex: $\log \frac{x}{y}=\log x+\log y^{-1}=\log x+(-1) \log y=\log x-\log y$

ACADEMIC CENTER
FOR EXCELLENCE

Example Logarithm Problems

1. Simplify:
$\log \left(2 x^{2} y^{3}\right)$
apply \log property \#1
$\log (2)+\log \left(x^{2}\right)+\log \left(y^{3}\right)$
apply \log property \#3
$\log (2)+2 \log (x)+3 \log (y)$
2. Simplify:
$\log _{2}\left(\frac{\sqrt[3]{x+1}}{2 x}\right)$
apply \log property \#3
$\log _{2}(\sqrt[3]{x+1})-\log _{2}(2 x)$
apply \log properties \#2 and \#1
$\frac{1}{3} \log _{2}(x+1)-\left(\log _{2}(2)+\log _{2}(x)\right)$
remember that $\log _{x} x=1$
$\frac{1}{3} \log _{2}(x+1)-\log _{2}(x)-1$
3. Write in terms of one logarithmic function:
$3 \ln (x)-2 \ln (x+1)$
apply \log property \#2
$\ln \left(x^{3}\right)-\ln (x+1)^{2}$
apply \log property \#3
$\ln \left(\frac{x^{3}}{(x+1)^{2}}\right)$
4. Write in terms of one logarithmic function:

$$
\log (x)-2 \log (y)-\log (z)+3 \log (w)
$$

exponent rule: $(+)$ term in numerator; (-) terms in denominator $\log \left(\frac{x w^{3}}{y^{2} z}\right)$

Practice Problems

Solve for x :

1. $3^{x}=243$
2. $5^{x}=13$
3. $2 e^{3 x}-3=15$
4. $e^{2 x}-2 e^{x}-15=0$
5. $\quad \log _{7}(x)=2$
6. $\quad \log (3 x)=\frac{1}{4}$
7. $(\ln x)^{2}-2 \ln \left(x^{4}\right)=20$
8. $\log \left(\frac{1}{100}\right)=x$
9. $\log _{x}(5)=2$
10. $\log _{8}(x)=\frac{4}{3}$
11. $\ln \left(e^{17}\right)=x$
12. $\ln (2 x)+\ln (5)=3$
13. $6^{x}=216$

Use a calculator to evaluate:
14. $\log _{2} 15$

Rewrite in terms of one logarithmic function:
15. $4 \ln (x+3 y)-2 \ln (z)+\frac{1}{2} \ln (w)$

Answers to Practice Problems

1. $x=5$
2. $x \approx 1.59369$
3. $x \approx 0.73241$
4. $x=\ln (5)$
5. $\mathrm{x}=49$
6. $x \approx 0.5928$
7. $\mathrm{x}=e^{10}$ or $\frac{1}{e^{2}}$
8. $x=-2$
9. $x=\sqrt{5}$
10. $\mathrm{x}=16$
11. $x=17$
12. $\mathrm{x}=\frac{e^{3}}{10}$
13. $x=3$
14. 3.907
15. $\ln \frac{(x+3 y)^{4} \cdot \sqrt{w}}{z^{2}}$
