GERMANNA ACADEMIC CENTER FOR EXCELLENCE

Graphing Linear Equations

Linear equations are used to form straight lines on a graph. The ability to graph a linear equation is essential to understanding and analyzing information. This handout will discuss the coordinate plane, how to plot points on the coordinate plane, and how to graph a linear equation in slope-intercept form.

You can navigate to specific sections of this handout by clicking the links below.

<u>The Coordinate Plane</u>: pg. 1 <u>Graphing Linear Equations Using Points</u>: pg. 2 <u>Slope-Intercept Form</u>: pg. 3 <u>Practice Problems</u>: pg. 7

The Coordinate Plane

The coordinate plane is a two-dimensional tool used to graph linear equations. It consists of a vertical line called the y-axis and a horizontal line called the x-axis. The point where the two lines intersect is called the origin, and all vertical and horizontal distances are plotted by counting units from the origin.

GERMANNA ACADEMIC CENTER FOR EXCELLENCE

Once a coordinate system is established, points can be plotted that will provide the basis for graphing a line. A point is written in the format (x-value, y-value), which is known as an ordered pair. The x-value is the point's distance from the origin in the x direction (horizontally), and the y-value is the point's distance from the origin in the y direction (vertically).

Example: Plot the point (1, 2). Step 1: Find the distance from the origin along the x axis. Step 2: Find the distance from the origin along the y axis. Step 3: Plot the point +1 horizontally and +2 vertically.

Graphing Linear Equations Using Points

In order to graph a linear equation, at least two points on the line must be found. By plugging in the x-value and solving for the y-value, a chart of ordered pairs can be created.

Example: Graph the linear equation y = x

Step 1: To find points on the line, begin by substituting a value for x to obtain a value for y; these two values create an ordered pair. It is typically easier to work with small integers. For instance, in this example, when the x-value equals -2 in the equation, the y-value equals -2. Therefore, the first ordered pair is (-2, -2). Substituting in the x-values -1, 0, 1, and 2 will result in the following table of ordered pairs:

X	Y
-2	-2
-1	-1
0	0
1	1
2	2

Notice that a line drawn through any two graphed points will also go through the rest of the graphed points. This means that only two points are needed to graph a line. If it is known that the points (0, 1) and (2, 2) are solutions to the linear equation $y = \frac{1}{2}x + 1$, then the rest of the equation's solutions can be graphed by drawing a line that passes through these two points.

Slope-Intercept Form

Slope-intercept form is one way to graph linear equations and is represented with the formula y = mx + b. In the equation, the "m" represents the slope, and the "b" represents the y-intercept.

Y-Intercept

The y-intercept is useful when graphing a linear equation because it provides a starting point to begin graphing. In order to plot the y-intercept point, it must be written as the ordered pair (0, b), where b is the value taken from the given slope-intercept equation.

Slope

The slope value of a linear equation indicates vertical and horizontal movement from a known point in order to plot a second point. The slope must be written as a fraction with the numerator corresponding to a vertical movement and the denominator corresponding to a horizontal movement on the coordinate plane. Instructors and textbooks often use the terminology "Rise over Run" as shown below:

Example 1: Graph the linear equation y = 2x + 3.

Step 1: Identify the ordered pair for the y-intercept. Since the given y-intercept value (b) in this equation is 3, the ordered pair for the y-intercept is (0, 3).

Step 2: Identify the slope value, and translate it into its fractional form. The slope value in this equation is the whole number 2, so it must be written as a fraction:

$$2 = \frac{2}{1}$$

Following the terminology "Rise over Run," the 2 is the "rise," and the 1 is the "run." Step 3: Plot the y-intercept, and use the slope to plot a second point. After plotting the y-intercept (0, 3), rise 2 units in the positive y direction, and run one unit in the positive x direction to plot the next point (1, 5). Then, connect the points with a line.

In the example, the slope value is positive; therefore, the position of the second point is plotted vertically on the y-axis and to the right on the x-axis.

Example 2: Graph the linear equation:

$$y = -\frac{2}{3}x + 1$$

Step 1: Find the y-intercept, which is (0, 1).

Provided by The Academic Center for Excellence

Step 2: Identify the slope value, and translate it into its fractional form. The slope value in this equation is the fraction $-\frac{2}{3}$. When dealing with a negative slope, the negative must be applied to the numerator of the fraction:

Step 3: Plot the y-intercept, then proceed 2 units down in the negative y direction, and 3 units right in the positive x direction. This gives the second point: (3,-1).

Practice Problems

Problem 2: Graph the Linear Equation y = -2x.

7

Practice Problems Solutions

Problem 1: Graph the Linear Equation $y = \frac{1}{2}x + 1$.

Step 1: Obtain the y-intercept.

$$y = \frac{1}{2}x + 1$$
(0, 1)

Step 2: Plot the y-intercept.

Step 3: Obtain the slope.

Slope =
$$\frac{1}{2}$$

Step 4: Rise 1 and Run 2 from the y-

intercept to plot the next point.

Step 5: Connect both points with a line.

Problem 2: Graph the Linear Equation y = -2x.

Step 1: Obtain the y-intercept.

$$y = -2x + 0$$
(0, 0)

Step 2: Plot the y-intercept.

Step 3: Obtain the slope.

Slope = -2

Step 4: Use the slope to determine the rise. and run.

Rise = -2 and Run = 1

Step 5: Connect both points with a line.

