

 Object Oriented Programming with Java
Provided by the Academic Center for Excellence 1 Reviewed June 2008

Object Oriented Programming with Java

What is Object Oriented Programming?
Object Oriented Programming consists of creating outline structures that are easily reused
over and over again. There are four elements of Object Oriented Programming:

• Abstraction – Generalization for Relationship Inheritance
• Encapsulation – Encoding of Data
• Inheritance – Relationships between “parent-child” objects
• Polymorphism – Flexibility of interchangeable parts / reusability

Imagine that there is an object known as “Automobile.” An automobile has properties such
as a year, model, make, color, etc. An automobile also has actions, such as drive forward,
turn right, turn left, etc. The properties are known as “Attributes,” and the actions are
known as “Methods.”

We can also create multiple instances of the object “Automobile,” one for each student in a
classroom. Each student owns a car, and no two students have the same vehicle; however,
each student’s car has a model and make and each car has the same action abilities. We can
use a UML Class Diagram as a development tool to design abstract ideas of objects; we
will refer to objects as classes.

The UML Class Diagram is a table that breaks a class into two categories: Attributes and
Methods. The example UML Class diagram above follows the Automobile model discussed
earlier. It contains the attributes Year, Model, Make, and Color as well as three methods:
Drive, Turn, and PrintLocation. The each attribute has a data type next to it to describe the
format of information stored for that attribute. The Year attribute will have a number, and
the Model, Make and Color attributes will all have text for a data type.

Class Automobile
Attributes:

Year :: number
Model :: text
Make :: text
Color :: text

Methods:
Drive(distance, speed, direction)
Turn(speed, direction)
PrintLocation()

Provided by the Academic Center for Excellence 2 Object Oriented Programming with Java

The Methods are actions that an “Automobile” object can perform. Methods often expect
data before performing a function. For example, an Automobile cannot drive forward without
knowing the Speed, Distance, and Direction of the movement. PrintLocation does not require
previous information; it will be used simply to output the current location of the car.

You can navigate to specific sections of this handout by clicking the links below.

Data Types vs. Classes: pg. 2

Variables: Scope, Regulations, and Class Over-Loading: pg. 3

Command Syntax: pg. 3

Declarations: pg. 4

Documentation: pg. 4

Import: pg. 5

Conditional Operands and Arithmetic Symbols: pg. 5

Loops & Repetition: pg. 5

Conditional Statements: pg. 6

 If/Else Statement: pg. 6

 Switch-Case Statement: pg. 6

More Information: pg. 6

Data Types vs. Classes
We mentioned data types in the UML diagram; data types are the set of possible values that
could exist for an instance of data. For example, the data type of a student’s age would be a
number, and the data type of their name would be text. Below is a table of common data
types within various programming languages. The Type column contains variable types used
in Java.

Type Description Example Usage
char A single ASCII character Letter Grade of a student
String A series of ASCII

characters
Student’s Name

int A short integer Age of a student
long A long integer Student ID number
float A decimal number Balance of Student Account
double A precise decimal Grade Point Average of Student
boolean A true or false value Commuting/Non-commuting Student

Provided by the Academic Center for Excellence 3 Object Oriented Programming with Java

We can create a class of anything we want; however, we still have to create the values within
a class based on the principles of these basic data types. Additionally we can create classes
of previously created classes and objects. This process is actually very beneficial to abstract
critical thinking. We could create a “Student” class that includes our previously created
“Automobile” class. For example: each student has a name(String), an age(int), an ID
number(long), a GPA(double), and a car(Automobile).

Variables: Scope, regulations and class over-loading
The “Automobile” class consists of attributes and methods. Attributes are known as
variables. Algebraically speaking, variables represent an unknown—and more importantly,
they are used to perform calculations regardless of the individual value. In programming,
variables are actually memory locations; the memory is used to store values assigned to a
variable. Variables, classes, functions, etc. have a few rules regarding usage and assignment.

• Variable names are case-sensitive:
o studentAGE is a different variable instance than STUDENTage

• Variable names cannot be pre-existing reserved commands:
o Cannot name a variable char, String, int or any other data type…

• Variable names cannot begin with a number, contain symbols, or spaces other than
an underscore (“_”):

o Cannot name a variable: 08Students, #phoneNumber, student age…

The scope of a variable refers to the life-time and locality of a value. For example, if we
create five students that each have a name, GPA, class schedule, etc. it is unnecessary for
studentA to have access to studentB’s GPA. We would make the GPA a Private variable to
isolate its availability to within the instance of a student. The process of making variables
Private vs. Public can help prevent unnecessary repetition, recursion, and memory allocation.
Usually, all attributes are created as Private and all methods are Public. This process then calls
for two additional methods that allow a program to read and write to the Private variable
from outside the class.

Class overloading is the process of calling a function and giving it different parameters.
Parameters are the required information for a function/class to operate. The “Automobile”
class created on the first page requires distance, speed, and direction to call the function
Drive. We can set up the Drive function to have a default direction, “Forward,” and only
require a distance and speed. This is an example of polymorphism, adding to the overall
flexibility of the class. When the Drive function is called, the class will automatically decide
which version of Drive to use based on the number of parameters that were given to it. A
common error that occurs while overloading classes and functions is Data Type Mismatch.
This error is caused by a function receiving a different data type value than what it was
expecting. For example, we cannot perform mathematic operations on Strings and text.

Command Syntax
Syntax is the proper way to call or use a function. The following are a few important
general Java formatting syntax requirements and tips:

• Complete statements of code should always have a semi-colon(;) at the end

Provided by the Academic Center for Excellence 4 Object Oriented Programming with Java

• Grouped code segments such as statements within a loop or class, should be
enclosed within curly braces “{” and “}”

• Order of Operations (Order of Precedent) is a non-configurable guideline for
mathematical procedures

• Parameters sent to a function are enclosed in parentheses and should have the
same data types as what is expected

• Creating constructors is a good way to control class creation; constructors are a
default setting for a created class.

The following are examples of proper syntax and description of common functions &
commands within the Java language.

Declarations:
Main Operational Class: This is used to create a “main executable” class to operate a
program. It operates as the main code routine.

Public class Example ()
{
 Public static void main (String args[])
 {
 ... Insert main code here
 }
}

Variable Declarations/Assignments: The following creates integer variables x, y, and z, as
well as two String variables. These variables are local or private, and cannot be seen outside
of the class. String variable test is actually assigned a value during declaration. We can
declare multiple variables in the same line of code as long as they are of the same data type;
they should be separated by a comma.

Public class example ()
{
 Private int x;
 Private int y,z;
 Private String test= “This is a String Variable”;
 Private String Name;
}

Documentation – adding comments and reminders is important in designing and re-
designing a program. Documentation also proves useful when debugging and trying
different features.

Single-Line Comment- used for documenting the rest of a line of text.
// Comment

Provided by the Academic Center for Excellence 5 Object Oriented Programming with Java

Block Comment – used for larger comments such as describing a process or documenting
authorship.
/* Comment Line 1

Comment Line 2
Comment Line 3 */

Import – used to include previously designed classes/functions within a class. Imports are
the very first lines of a program.

Import Java.Util.Scanner; // Used to import class Scanner
Import Java.Awt; // imports a graphical class

Conditional Operands and Arithmetic Symbols

Expression Description Expression Description
n1 + n2 Addition n1 == n2 Equality
n1 – n2 Subtraction n1 != n2 Does not equal
n1 * n2 Multiplication n1 > n2 Greater than
n1 / n2 Division, integer quotient after

division
n1 >= n2 Greater than or equal to

n1 % n2 Modulus, integer remainder after
division

n1 < n2 Less than

n1 = n2 Assignment n1 <= n2 Less than or equal to

Loops & repetition: Looping and repetition is used to reuse sections of code that are
required multiple times. Looping is very useful for reviewing conditions, counting, and
handling user-entry error. The only major caution with looping is to avoid infinite loops;
infinite variable creation and storage can cause serious computer problems.

Finite Loop – For/Next Loop – best used for counting; the exit condition is checked
before executing the statements within the loop.

For (variable; condition; increment)
{

statements in loop…
}

While/Do Loop – best used for indefinite loops where an unknown quantity of code
executions is required; the exit condition is checked before executing the statements within
the loop.

While (condition)
{
 Statements in loop…
}

Provided by the Academic Center for Excellence 6 Object Oriented Programming with Java

Conditional Statements: Conditional statements are used to make decisions within a
program or application. There are multiple conditional statement types; which one to use
depends on the situation. A simple yes/no question would best be decided by an If/Else
statement. If a decision needs to be made regarding different values such as outputting a
response based on what grade a high school student is in, a Switch-Case statement would be
more efficient. A process known as nesting can also be used by embedding If/Else
statements within If/Else statements.

If/Else Statement
If (condition)
 {
 Statements if condition is true

}
Else
 {
 Statements if condition is false
 }

Switch-Case Statement – use break to exit switch-case as it will continue to test cases.

Switch (variable)
{

Case (value1):
 Statement if variable = value1;
 Break;

Case (value2):
 Statement if variable = value2;
 Break;

…
Default:

 Statement if variable is anything else;
}

More Information:
For more information regarding specific Java functions, visit the online tutorials and
documentation from the creators of Java technology.

Tutorials:
http://java.sun.com/docs/books/tutorial/index.html

API Documentation:
http://java.sun.com/j2se/1.5.0/docs/api/

http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/j2se/1.5.0/docs/api/

