

Provided by Coding Errors: Debugging and Troubleshooting Techniques
The Academic Center for Excellence March 2024

1

Coding Errors: Debugging and Troubleshooting Techniques

Problem solving is a fundamental skill required for programming that involves the development
of an organized approach to identifying problems, analyzing probable causes, determining
solutions, and testing solutions. Students can apply this process when debugging and
troubleshooting coding errors. This handout will demonstrate the process of troubleshooting by
examining a specific situation: an inoperable lamp.

Step 1: Identify the problem.

The first critical step, in the troubleshooting process, is to identify the problem. It narrows the
focus for making corrections, and it provides a clear goal.

Example: The lamp will not turn on.

Step 2: Understand the situation.

During this stage, it is important to gather relevant information to find potential variables that
could be causing the problem. By doing this, the issue can be broken into smaller components,
making it easier to identify and apply a solution. The following example includes a series of
questions that can be applied to the situation.

Provided by Coding Errors: Debugging and Troubleshooting Techniques
The Academic Center for Excellence March 2024

2

Example:

1. Is the cord from the lamp to the wall damaged?
2. Is the cord plugged into the wall?
3. Is there a light bulb inside the lamp? Is it secured tightly?
4. Is the wall switch flipped to “on?”

Step 3: Define the goals.

The goal of troubleshooting is to resolve a problem. In this example, the goal is to have the
lamp turned on and functioning properly. Any other information that will not fix the problem
does not matter, such as the color of the bulb.

Step 4: Generate probable causes.

After contemplating several scenarios of what might be causing the problem, propose steps
that will lead to a potential solution.

Provided by Coding Errors: Debugging and Troubleshooting Techniques
The Academic Center for Excellence March 2024

3

1. The light bulb may be missing or not working.
 Test the light bulb to ensure it works by putting it in a lamp/socket that is known to

be functional.
2. The lamp itself may be turned off or damaged.
 Check the switch to ensure it is set to “on.”
 Examine the lamp for any visible damage to the switch, socket, or wire.

3. The cord may be broken.
 Examine the cord for any damage.

4. The lamp may not be plugged in
 Check to see if the cord is plugged into the wall socket.

5. The wall switch may be turned off.
 Check to see if the wall switch is set to "on.”

Step 5: Test potential solutions starting with the best option first.

During the last step of troubleshooting, not all the scenarios in the previous step may need to
be resolved. In the diagram above, scenario #4, “The lamp may not be plugged in,” appears to
be the problem and, therefore, the best place to begin. The solution is to plug the lamp into the
wall socket. Another tip is to start with the simplest solution first instead of a more complex
solution.

Provided by Coding Errors: Debugging and Troubleshooting Techniques
The Academic Center for Excellence March 2024

4

Applying Troubleshooting to Debugging Code

The process of troubleshooting an inoperable lamp is similar to debugging code. While
troubleshooting finds the root of a problem, debugging is the process of fixing errors, often
referred to as “bugs,” in code.

Unlike the beginning process of troubleshooting, where the problem must be identified, a
program will display a message identifying the error. These messages are written in red and
provide the location of the error, the type of error, and a brief description of why the error
occurred. Within a printed black and white copy of this handout, the error has been identified
to the reader in the terminal section.

Example:

In this example of Python code, the message shows that the error has occurred on line 3. The
reason for the error is that the user is trying to add incompatible data types, “integers” and
“strings.”

 Console
1 test_value = "Hello"
2 test_int= 100
3 nuval = test_int+test_value

 Terminal
 Traceback (most recent call last):

 File "<pyshell#2>", line 3, in <module>
 nuval = test_int+test_value
TypeError: unsupported operand type(s) for +: 'int' and
'str'

Location of error

Error Type Description

Provided by Coding Errors: Debugging and Troubleshooting Techniques
The Academic Center for Excellence March 2024

5

Example:
Returning to the lamp scenario, an error message might resemble:

This would identify the location of the problem but provide no information about why there is
no power reaching the bulb. Often when coding, fixing a portion of code can lead to other error
messages that further break down the debugging process, such as:

The error message indicates that the light bulb is not turning on, and the switch is set to “off.”

Tip: Error messages vary in style and function between different programming languages. It is
critical to understand the programming language being used to understand the relationship
between each occurrence and use the tools provided to fix the problem.

Troubleshooting and debugging skills are crucial to problem solving. By isolating the issue,
testing each possibility, and finding solutions, students build a greater skill set for programming.
Applying these skills develops a foundation for critical thinking which can be applied to fixing
more complex error scenarios. For more information about problem solving, please refer to the
Computer Programming Problem Solving Process handout.

 Terminal

ERROR: No power at bulb

 Terminal

ERROR: No Power at bulb
ERROR: Switch set to 'off'

https://germanna.edu/sites/default/files/2022-03/Computer%20Programming%20Problem%20Solving%20Process.pdf

