

Logarithms

Natural exponential function

$$f(x) = e^x$$

e is called **Euler's number**. Like π , Euler's number is an irrational number; it's decimal equivalent is a never-ending sequence of digits:

$$e \approx 2.71828182845904523...$$

Logarithmic functions answer the following question "to what power must I raise a number to in order to get a specific number?"

example: $\log_e x = n \equiv e^n = x$ $\log_3 81 = x \equiv 3^x = 81; x = 4$ $\log_2 x = -5 \equiv 2^{-5} = x; x = \frac{1}{32}$ $\log_x 125 = 3 \equiv x^3 = 125; x = 5$ $\log_a 1 = x \equiv a^x = 1; x = 0 \text{ (remember } x^0 = 1)$

Base 10 or Common Log (no base is shown; log)

$$\log 1000 = 3 \equiv 10^3 = 1000$$

Base e or Natural Logarithm

$$\ln x \text{ or } \log_e x$$

Inverse Relationship

$$\log_a(a^x) = a^{\log_a x} = x$$

$$\log(10^x) = 10^{\log x} = x$$

$$\ln(e^x) = e^{\ln x} = x$$

Properties of Logarithms

1)
$$\log(xy) = \log x + \log y$$

ex:
$$\ln 15 = \ln (3*5) = \ln 3 + \ln 5$$

$$2) \quad \log x^a = a \log x$$

ex:
$$\ln x^4 = \ln(x \cdot x \cdot x \cdot x) = \ln x + \ln x + \ln x + \ln x = 4\ln x$$

$$3) \quad \log \frac{x}{y} = \log x - \log y$$

ex:
$$\log \frac{x}{y} = \log x + \log y^{-1} = \log x + (-1)\log y = \log x - \log y$$

Example Logarithm Problems

1. Simplify:

$$\log(2x^2y^3)$$
apply log property #1
$$\log(2) + \log(x^2) + \log(y^3)$$
apply log property #3
$$\log(2) + 2\log(x) + 3\log(y)$$

2. Simplify:

$$\log_2(\frac{\sqrt[3]{x+1}}{2x})$$
apply log property #3
$$\log_2(\sqrt[3]{x+1}) - \log_2(2x)$$
apply log properties #2 and #1
$$\frac{1}{3}\log_2(x+1) - (\log_2(2) + \log_2(x))$$
remember that $\log_x x = 1$

$$\frac{1}{3}\log_2(x+1) - \log_2(x) - 1$$

3. Write in terms of one logarithmic function:

$$3 \ln(x) - 2 \ln(x+1)$$
apply log property #2
$$\ln(x^3) - \ln(x+1)^2$$
apply log property #3
$$\ln\left(\frac{x^3}{(x+1)^2}\right)$$

4. Write in terms of one logarithmic function:

$$\log(x) - 2\log(y) - \log(z) + 3\log(w)$$
exponent rule: (+) term in numerator; (-) terms in denominator
$$\log\left(\frac{xw^3}{y^2z}\right)$$

Practice Problems

Solve for x:

1.
$$3^x = 243$$

2.
$$5^x = 13$$

3.
$$2e^{3x} - 3 = 15$$

4.
$$e^{2x} - 2e^x - 15 = 0$$

5.
$$\log_7(x) = 2$$

6.
$$\log(3x) = \frac{1}{4}$$

7.
$$(\ln x)^2 - 2\ln(x^4) = 20$$

8.
$$\log(\frac{1}{100}) = x$$

9.
$$\log_{x}(5) = 2$$

10.
$$\log_8(x) = \frac{4}{3}$$

11.
$$\ln(e^{17}) = x$$

12.
$$ln(2x) + ln(5) = 3$$

13.
$$6^x = 216$$

Use a calculator to evaluate:

Rewrite in terms of one logarithmic function:

15.
$$4\ln(x+3y) - 2\ln(z) + \frac{1}{2}\ln(w)$$

Answers to Practice Problems

1.
$$x = 5$$

2.
$$x \approx 1.59369$$

3.
$$x \approx 0.73241$$

4.
$$x = \ln(5)$$

5.
$$x = 49$$

6.
$$x \approx 0.5928$$

7.
$$x = e^{10}$$
 or $\frac{1}{e^2}$

8.
$$x = -2$$

9.
$$x = \sqrt{5}$$

10.
$$x = 16$$

11.
$$x = 17$$

12.
$$x = \frac{e^3}{10}$$

13.
$$x = 3$$

15.
$$\ln \frac{(x+3y)^4 \cdot \sqrt{w}}{z^2}$$